
Microdata R Code

Set the working directory

The default working directory for an RMarkdown file is the location of the file (e.g. your “Downloads” folder
if you just downloaded and opened it). To save workshop files to a different location, in RStudio go to File
-> Save As -> and choose a location you will remember.

Install and load required packages

required_packages <- c("haven", "dplyr", "srvyr", "gtsummary", "ggplot2", "ggpubr", "cardx")

Loop through each required package and install any that are missing
for (package in required_packages) {

if (!package %in% installed.packages()) {
install.packages(package)

}
}

#Load required packages for use in this R session (HIDE OUTPUT)
library(haven) #to import SPSS .sav file
library(dplyr) #for data manipulation
library(srvyr) #survey-specific functions
library(gtsummary) #create summary tables
library(ggplot2) #create plots
library(flextable) # create tables
library(officer) # manipulate word docs and power points
library(cardx)

Download and unzip the microdata

This workshop uses Public Use Microdata Files (PUMFs) from the Canadian Tobacco and Nicotine Survey
(CTNS). PUMFs for the CTNS and other Statistics Canada surveys are available in Abacus, UBC Library’s
data repository (https://abacus.library.ubc.ca/).

Survey data can be downloaded by visiting Abacus with a browser, but R can automate the process using
the Abacus API. Each Abacus file has a persistent identifier called a handle. Listed below are the CTNS
data files used in this example. (Links are to the Abacus records where you’ll also find codebooks and user
guides.)

Survey File description File name Handle
CTNS 2020 Microdata in SPSS .sav

format
CTNS_2020_PUMF_SPSS_sav.zip11272.1/AB2/UYC0Z8/XVITQW

1

https://abacus.library.ubc.ca/
https://hdl.handle.net/11272.1/AB2/UYC0Z8

Survey File description File name Handle
CTNS 2022 Microdata in SPSS .sav

format
CTNS_2022_SPSS_SAV.zip11272.1/AB2/PWWFK3/4K96XZ

Run the code below to download and unzip data files for the 2020 and 2022 survey years

download.file("https://abacus.library.ubc.ca/api/access/datafile/:persistentId?persistentId=hdl:11272.1/AB2/UYC0Z8/XVITQW","CTNS_2020.zip", mode="wb")

download.file("https://abacus.library.ubc.ca/api/access/datafile/:persistentId?persistentId=hdl:11272.1/AB2/PWWFK3/4K96XZ","CTNS_2022.zip", mode="wb")

unzip("CTNS_2020.zip")
unzip("CTNS_2022.zip")

Look in the RStudio Files tab in the bottom right of the screen. You should see the unzipped “.sav” files in
your working directory.

Read in your sav files

The read_sav function from the haven package imports SPSS .sav files as data.frames, which are similar to
spreadsheets. It also imports variable and value labels to make the data easier to work with.

#Import the .sav files and store them as 'ctns2020' and 'ctns2022'
data2020 <- read_sav("ctns_2020_pumf_eng.sav")
data2022 <- read_sav("ctns_2022_pumf.sav")

It is important to check that your data imported correctly. Click ‘data2020’ and ‘data2022’ in the environ-
ment pane (top right) to view the imported data. Is it what you expect?

Why use sav files?

If we compare the codebook to the data imported into R as a sav file, we can see that the codebook variables
have a description directly in the header of the dataframe. If we were using a plain text format, we would
loose this information.

Set up your survey data for analysis

After confirming that the data imported correctly we can perform other other operations to prepare the data
for analysis.

Note: The code below uses the pipe operator from the dplyr package to perform multiple func-
tions in sequence. The %>% at the end of each lines tells R to take the output of that line and
“pipe” it into the next line for further processing.

ctns2020 <- data2020 %>%
as_factor() %>% #for better labels and data handling
droplevels() %>% #remove levels that have no data (tidier tables)
as_survey(weights=WTPP) #treat as a survey with weight variable WTPP

ctns2022 <- data2022 %>%
as_factor() %>%
droplevels() %>%
as_survey(weights=WTPP)

2

https://hdl.handle.net/11272.1/AB2/PWWFK3

srvyr package

In the code above we used the as_survey function in the srvyr package. We set the weight to be the WTPP
variable. After this point, the data will automatically be weighted for graphs and analyses.

Identify variables for analysis

Codebooks help you identify variables for your analysis. Our example uses the variables below but you’re
welcome to experiment with others during practice.

Note: Variables are not always consistent between survey years: names may change and variables
may be added or removed.

CTNS 2020

variable notes
GENDER binary variable, confuses gender and sex (Female/Male)
AGEGROUP age groups from 15 to 65+
HHLDSIZE household size from 1 to 5+
DV_SSR smoking status (current/former/never) DV_SS in 2022
PROV_C province

CTNS 2022

variable notes
GENDER acknowledges non-binary identities but groups them for privacy

(Women+/Men+)
AGEGROUP age groups from 15 to 65+
HHLDSIZE not available in 2022 PUMF
DV_SS smoking status (current/former/never) DV_SSR in 2020
PROV_C province

Create summary tables

gtsummary package

There are many ways to create tables in R. The tbl_svysummary function from the gtsummary package
takes advantage of the survey weight we configured earlier and produces easy-to-read tables with little effort.

Here’s a sample table with one variable. . .

#Table estimating population by smoking status, CTNS 2020
tbl_svysummary(ctns2020, include=DV_SSR)

Characteristic N = 31,306,6241

DV_SSR

3

https://ubc-library-rc.github.io/r-microdata/content/orientation_ctns.html#weights
https://ubc-library-rc.github.io/r-microdata/content/orientation_ctns.html#weights

Current smoker 3,228,743 (10%)
Former smoker 7,746,431 (25%)
Never smoked 20,305,439 (65%)
Unknown 26,011

1 n (%)

. . . and another with two variables:

#Table estimating population by smoking status and province, CTNS 2020
tbl_svysummary(ctns2020, include=DV_SSR, by=PROV_C)

Characteristic Newfoundland and Labrador N = 440,0231 Prince Edward Island N = 132,1161 Nova Scotia N = 830,8101 New Brunswick N = 637,2551 Quebec N = 7,148,1571 Ontario N = 12,393,9271 Manitoba N = 1,048,5331 Saskatchewan N = 894,2991 Alberta N = 3,587,8621 British Columbia N = 4,193,6411

DV_SSR
Current smoker 64,951 (15%) 15,196 (12%) 113,765 (14%) 61,790 (9.7%) 873,122 (12%) 1,222,067 (9.9%) 135,959 (13%) 99,893 (11%) 319,529 (8.9%) 322,470 (7.7%)
Former smoker 116,027 (26%) 35,852 (27%) 233,046 (28%) 217,750 (34%) 1,968,379 (28%) 2,721,022 (22%) 259,776 (25%) 246,822 (28%) 877,121 (24%) 1,070,636 (26%)
Never smoked 259,045 (59%) 80,177 (61%) 483,998 (58%) 357,715 (56%) 4,303,197 (60%) 8,436,917 (68%) 649,500 (62%) 546,712 (61%) 2,387,643 (67%) 2,800,535 (67%)
Unknown 0 891 0 0 3,459 13,922 3,298 872 3,570 0

1 n (%)

Saving tables to a word document

HHLDSIZE

Create the summary table
summary_table <- tbl_svysummary(ctns2020, include = DV_SSR, by = PROV_C)

Extract the data frame from the gtsummary object
summary_df <- summary_table %>%

as_tibble() %>%
select(-starts_with("row_type"))

Convert the data frame to a flextable
summary_flextable <- flextable(summary_df)

Create a Word document and add the flextable
doc <- read_docx() %>%

body_add_flextable(summary_flextable)

Save the Word document
print(doc, target = "summary_table.docx")

Create plots in ggplot2

Formatted tables are good for presentations but unformatted statistics are easier to plot. The workflow
below uses functions from three packages to summarize and present survey data in bar graphs (dplyr, srvyr,
and ggplot2).

Let’s plot the percentages from the table about smoking status and household size.

4

https://ubc-library-rc.github.io/ggplot2_intro_workshop/

Step 1: Create a summary table (Household size and smoking status) and store it as plot1_data

plot1_data <- ctns2020 %>%
filter(!is.na(HHLDSIZE) & !is.na(DV_SSR)) %>% #remove NA values
group_by(HHLDSIZE, DV_SSR) %>% #group by household size, then smoking status
summarize(percent = survey_prop()*100) #calculate percentages for each grouped value

When ‘proportion‘ is unspecified, ‘survey_prop()‘ now defaults to ‘proportion = TRUE‘.
i This should improve confidence interval coverage.
This message is displayed once per session.

Click plot1_data in the environment pane (top right) and see how percentages are calculated. (They total
100% for each household size).

Step 2: pipe the data into ggplot2

ggplot2 is a powerful and popular package for creating plots. Key components of a ggplot command include
the aes function (identifies the variables) and the geom function (sets the plot type). There are many, many
other optional components to customize the plot (see ggplot documentation).

plot1_data %>%
ggplot(aes(y=percent, x=HHLDSIZE, fill=DV_SSR))+
geom_col(position="dodge")

0

20

40

60

80

1 2 3 4 5 or more
HHLDSIZE

pe
rc

en
t

DV_SSR

Current smoker

Former smoker

Never smoked

5

Current smoker percentage by age group, 2020 and 2022

This graph will compare the proportion of current smokers across two survey years, within each age group.

The structure of the command is similar to what we’ve seen already, but there are new components to data
calculation step:

1. Specify vartype=“ci” to calculate 95% confidence intervals
2. After calculating percentages, keep only the “Current smoker” rows
3. Add a year variable to distinguish between survey years
4. Rename the smoking status variable so it’s the same for both years

Step 1: calculate 2020 values

plot2_data_2020 <- ctns2020 %>%
filter(!is.na(DV_SSR)) %>%

group_by(AGEGROUP, DV_SSR) %>%
summarize(percent = survey_prop(vartype="ci")*100) %>%
filter(DV_SSR == 'Current smoker') %>%
mutate(year = "2020") %>%
rename(smoking_status = DV_SSR)

Step 2: calculate 2022 values and join with 2020

plot2_data_2022 <- ctns2022 %>%
filter(!is.na(DV_SS)) %>%
group_by(AGEGROUP, DV_SS) %>%
summarize(percent = survey_prop(vartype="ci")*100) %>%
filter(DV_SS == 'Current smoker') %>%
mutate(year = "2022") %>%
rename(smoking_status = DV_SS)

Step 3: join the 2020 and 2022 data together

plot2_data <- full_join(plot2_data_2020, plot2_data_2022)

Joining with ‘by = join_by(AGEGROUP, smoking_status, percent, percent_low,
percent_upp, year)‘

Step 4: plot the data

ggplot(plot2_data, aes(x=percent, y=AGEGROUP, fill=year))+
geom_col(position="dodge")

6

15 to 19 years old

20 to 24 years old

25 to 34 years old

35 to 44 years old

45 to 54 years old

55 to 64 years old

65 years old and older

0 5 10
percent

A
G

E
G

R
O

U
P

year

2020

2022

The bar graph shows relatively small changes between the years within each age group. The percentage of
current smokers in some age groups went up, in others it went down, and there’s no strong pattern. Is the
direction of change significant?

When calculating percentages we added the vartype=“ci” parameter to generate confidence intervals. These
can be plotted on a line graph that shows the current smoker proportions for each age group in black, along
with a semi-transparent (alpha=0.5) gray band depicting the confidence intervals.

ggplot(plot2_data, aes(x=year, y=percent, group=AGEGROUP))+
geom_errorbar(aes(ymin=percent_low, ymax=percent_upp), width=0.2) +
geom_point()+
facet_wrap(vars(AGEGROUP))

7

65 years old and older

35 to 44 years old 45 to 54 years old 55 to 64 years old

15 to 19 years old 20 to 24 years old 25 to 34 years old

2020 2022

2020 2022 2020 2022

4

8

12

16

4

8

12

16

4

8

12

16

year

pe
rc

en
t

The graph makes it clear that the confidence intervals are relatively wide for some age groups: we can’t say
with 95% certainty that the actual direction of change in the percentage of smokers in Canada matches what
we see in this survey sample.

Step 5: Customize the plot

This is meant as an illustrative example of how customization plots made with ggplot2 are. There are many
options for customization, so this is by no means extensive.

ggplot(plot2_data, aes(x=year, y=percent, group=AGEGROUP))+
geom_errorbar(aes(ymin=percent_low, ymax=percent_upp),

width=0.4, ## change the witdh of the top and bottom horizontal line of the error bar
color="#737574", ## change the color of error bars (hex color)
linewidth=2) + ## linewidth makes the error bar lines wider or thinner

geom_point(cex=5, aes(colour = year))+ # cex makes the points bigger or smaller, color sets the point color (with color name recognized by R)
facet_wrap(vars(AGEGROUP), ncol=4)+ ## setting the column number to distribut the facest
theme_classic()+ ## change the background
theme(axis.text=element_text(colour = "black", size = 12), ## set the axis text color and make the text bigger.

axis.title = element_text(face = "bold", size = 14, colour = "black")) + ## set title size and colour
labs(x="Survey Year", y="% Smokers by Age Group", color="Survey Year")+ # custom axis lables
scale_color_manual(values=c("dodgerblue1", "blue4")) ## differnt point colours by year

8

45 to 54 years old 55 to 64 years old 65 years old and older

15 to 19 years old 20 to 24 years old 25 to 34 years old 35 to 44 years old

2020 2022 2020 2022 2020 2022

2020 2022

4

8

12

16

4

8

12

16

Survey Year

%
 S

m
ok

er
s

by
 A

ge
 G

ro
up

Survey Year

2020

2022

Step 6: Export the plot

Now that we have a pretty plot, we can save it.

This can be done manually from the plots tab. The plot area can be stretched and re-sized by stretching
the plot area, then by clicking Export and saving the plot as an image or from there.

To save time and export consistently sized plots, if is often better to use the package ggpubr.

ggsave(filename="smokers_by_age_and_year.pdf", width=10, height=8, units="in")

9

	Set the working directory
	Install and load required packages
	Download and unzip the microdata
	Read in your sav files
	Why use sav files?
	srvyr package

	Identify variables for analysis
	CTNS 2020
	CTNS 2022

	Create summary tables
	gtsummary package
	Saving tables to a word document

	Create plots in ggplot2
	Step 1: Create a summary table (Household size and smoking status) and store it as plot1_data
	Step 2: pipe the data into ggplot2

	Current smoker percentage by age group, 2020 and 2022
	Step 1: calculate 2020 values
	Step 2: calculate 2022 values and join with 2020
	Step 3: join the 2020 and 2022 data together
	Step 4: plot the data
	Step 5: Customize the plot
	Step 6: Export the plot

