Link

Answer to exercise at non-parametric stats:

Mann-Whitney test

Input

wilcox.test(AverageTemperature ~ era, data=carbon)

Output

Wilcoxon rank sum test

data:  AverageTemperature by era
W = 437, p-value = 0.0002986
alternative hypothesis: true location shift is not equal to 0

Spearman Correlation

Input

cor.test(carbon$AverageTemperature, carbon$AverageCarbonEmission, method="spearman")

Output

Spearman's rank correlation rho

data:  carbon$AverageTemperature and carbon$AverageCarbonEmission
S = 4452, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
        rho 
0.8478469 

Conclusions from our analysis

Consultations

Research Commons has a team of GAAs happy to help you analyze your data. Book a consultation online.

Feedback

Please, provide us Feedback